GCE AS/A level

0978/01

MATHEMATICS - FP2
 Further Pure Mathematics

A.M. FRIDAY, 24 June 2016

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Using the substitution $u=x^{2}$, evaluate the integral

$$
\int_{0}^{\sqrt{2}} \frac{x}{\sqrt{16-x^{4}}} \mathrm{~d} x
$$

giving your answer in the form $\frac{\pi}{n}$, where n is a positive integer.
2. (a) (i) Evaluate $(3-\mathrm{i})^{2}$, giving your answer in the form $a+\mathrm{i} b$.
(ii) Using your result, show that

$$
\begin{equation*}
(3-i)^{4}=28-96 i . \tag{3}
\end{equation*}
$$

(b) Hence write down the four 4th roots of $28-96 \mathrm{i}$.
3. (a) Use de Moivre's Theorem to prove that, for $\sin \theta \neq 0$,

$$
\begin{equation*}
\frac{\sin 4 \theta}{\sin \theta}=4 \cos \theta\left(1-2 \sin ^{2} \theta\right) \tag{4}
\end{equation*}
$$

(b) Hence evaluate

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{\sin 4 \theta}{\sin \theta} \mathrm{~d} \theta
$$

Give your answer correct to three significant figures.
4. Using the substitution $t=\tan \left(\frac{x}{2}\right)$, find the general solution, in radians, to the equation

$$
\begin{equation*}
\sin x+\tan x+\tan \left(\frac{x}{2}\right)=0 \tag{11}
\end{equation*}
$$

5. The function f is defined by

$$
f(x)=\frac{3 x^{2}+x+6}{(x+2)\left(x^{2}+4\right)} .
$$

(a) Determine whether f is even, odd or neither even nor odd.
(b) Express $f(x)$ in partial fractions.
(c) Hence evaluate

$$
\int_{0}^{1} f(x) \mathrm{d} x
$$

giving your answer correct to three significant figures.
6. (a) Show that the general hyperbola with equation

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

can be represented parametrically by $x=a \sec \theta, y=b \tan \theta$.
(b) The equation of the hyperbola H is

$$
x^{2}-y^{2}=1
$$

(i) Show that the equation of the normal to H at the point $P(\sec \theta, \tan \theta)$ is

$$
x \sin \theta+y=2 \tan \theta
$$

(ii) This normal meets the x-axis at the point Q. Show that the locus of the midpoint of $P Q$ as θ varies is a hyperbola. Determine its eccentricity and the coordinates of its foci.
7. The function f is defined by

$$
f(x)=\frac{x^{3}-8}{x^{3}-1}
$$

(a) Write down the equations of the asymptotes on the graph of f.
(b) Find the points of intersection of the graph of f with the coordinate axes.
(c) Find the coordinates of the stationary point on the graph of f and identify it as a maximum, a minimum or a point of inflection.
(d) Sketch the graph of f, including the asymptotes.
(e) The set $S=[-2,2]$. Determine
(i) $f(S)$.
(ii) $f^{-1}(S)$.

END OF PAPER

